Topics in the November 2013 Exam Paper for CHEM1904

Click on the links for resources on each topic.

2013-N-2:

- Crystal Structures
- Metal Complexes

2013-N-3:

- Metal Complexes
- Coordination Chemistry

2013-N-4:

- Weak Acids and Bases
- Calculations Involving pKa

2013-N-5:

- Solubility Equilibrium
- Metal Complexes

2013-N-6:

- Intermolecular Forces and Phase Behaviour
- Physical States and Phase Diagrams

2013-N-7:

- Alkenes
- Stereochemistry

2013-N-8:

Amines

2013-N-9:

- Alkenes
- Alcohols

2013-N-10:

- Alkenes
- Alcohols

2013-N-11:

- Organic Halogen Compounds
- Carboxylic Acids and Derivatives

2013-N-12:

• Aldehydes and Ketones

2223(a)

THE UNIVERSITY OF SYDNEY

CHEM1902 - CHEMISTRY 1B (ADVANCED)

and

CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM)

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2013

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME OTHER	NUMBER TABLE	
NAMES	IABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 13, 20, 22 and 24 are for rough working only.

Multiple choice section

OFFICIAL USE ONLY

Short answer section

		Marks		
Page	Max	Gained		Marker
10	7			
11	8			
12	9			
14	6			
15	6			
16	8			
17	3			
18	6			
19	6			
21	7			
23	5			
Total	71			
Check	Total			

Marks • Copper oxide is used as a photovoltaic material in solar cells and it crystallizes with 7 the structure shown below. The large white spheres represent the oxygen atoms and the smaller black spheres represent copper atoms. How many unit cells are represented in the above diagram? Explain your answer. From the solid-state structure shown above, determine the empirical formula for copper oxide. What is the oxidation state of copper in this compound? Use the box notation to predict whether the copper ions are paramagnetic. Silver oxide is another Group 11 metal oxide and its solid-state structure is identical to that of copper oxide even though the ionic radius for the copper ion (118 pm) is smaller than that of the silver ion (139 pm). Account for this observation. Page Total:

Energy

• K₂[Re₂Cl₈]·2H₂O is an historically important example of a metal-metal bonded complex. Name the complex by using standard IUPAC nomenclature.

Marks 8

What is the oxidation state of Re in this complex? How many *d*-electrons are on each Re atom in this complex? K₂[Re₂Cl₈]·2H₂O possesses an extremely short Re–Re bond (224 pm), much shorter than the bonding distance between Re atoms in Re metal (274 pm)! Propose a reasonable explanation for the very short Re-Re bond length in the complex by adding *d*-electrons into the (partial) MO scheme shown below. Determine the bond order for the metal-metal bond and draw a structure for the complex. σ^* π^* δ^* δ π σ Re-Re Reduction of the Re complex by one electron gives rise to a paramagnetic species in which the Re-Re distance increases significantly. Propose a reasonable hypothesis for the bond-lengthening phenomenon.

• Boric acid, $B(OH)_3$, is a weak acid ($pK_a = 9.24$) that is used as a mild antiseptic and eye wash. Unusually, the Lewis acidity of the compound accounts for its Brønsted acidity. By using an appropriate chemical equation, show how this compound acts as a Brønsted acid in aqueous solution.	Marks 9
Solution A consists of a 0.40 M aqueous solution of boric acid at 25 °C. Calculate the pH of Solution A.	
pH =	
At 25 °C, 1.00 L of Solution B consists of 101.8 g of NaB(OH) ₄ dissolved in water. Calculate the pH of Solution B.	
pH =	
Using both Solutions A and B, calculate the volumes (mL) required to prepare a 1.0 L solution with a pH = 8.00 .	

• What is the solubility of Cu(OH) ₂ in mol L ⁻¹ ? K_{sp} (Cu(OH) ₂) is 1.6×10^{-19} at 25 °C.	Ma 6
Answer:	
The overall formation constant for $[Cu(NH_3)_4]^{2+}$ is 1.0×10^{13} . Write the equation for the reaction of Cu^{2+} ions with excess ammonia solution.	
Calculate the value of the equilibrium constant for the following reaction.	
$Cu(OH)_2(s) + 4NH_3(aq) \checkmark [Cu(NH_3)_4]^{2+}(aq) + 2OH^{-}(aq)$	
Answer:	
Would you expect Cu(OH) ₂ (s) to dissolve in 1 M NH ₃ solution? Briefly explain your answer.	

Marks The diagram below shows the phase diagram of sulfur. Note that 'rhombic' and 6 'monoclinic' refer to two different crystalline forms of the element. monoclinic 153 °C, 1420 atm sulfur 1041 °C, 204 atm Pressure (atm) rhombic sulfur 115.18 °C, 3.2×10^{-5} atm 95.31 °C, 5.1×10^{-6} atm Temperature (°C) Determine the number of triple points for sulfur and indicate which species are present at each of the triple points. Which crystalline form of sulfur is predicted to be more dense? Briefly explain your answer. "Plastic" sulfur is a tough elastic substance that is formed when molten sulfur (m.p. = 115.2 °C) is poured into cold water. On standing, it slowly crystallizes. Predict which crystalline form is formed at room temperature and pressure. Also, explain why "plastic" sulfur is not shown on the above phase diagram.

	to the isomer of 2-pentene sh n approximate ratio of 50:25:	hown below gives 3 isomeric products, :25 respectively.	Marks 8
\searrow	HBr	$\mathbf{A} + \mathbf{B} + \mathbf{C}$	
Draw the three p	roducts A , B and C .		
A	В	С	
Explain the ratio	of products observed.		_
			-
What is the isom	eric relationship between A a	and B ?	_
What is the isom	eric relationship between B a	and C?	
Assign the stereo	ochemistry of the starting mat	terial isomer. Show your working.	_
Draw the other c	onfigurational isomer of 2-pe	entene and assign its stereochemistry.	-
What product(s) in what ratio?	would you expect from the a	addition of HBr to this stereoisomer, and	_

Consider the amine **D**, imine **E** and nitrile **F** shown below. Draw any lone pairs of electrons that are required to complete the structures.
Marks 3
Marks 3
Marks 4
Marks 4
Marks 5
MH2
MH2</li

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks • Consider the following reaction sequences beginning with the secondary alcohol, G. 6 OH Η $K_2Cr_2O_7 / H^{\oplus}$ conc. H₂SO₄ / heat J +(Step iii) (Step i) G Ι CH₃MgBr (Step iv) H_2 , Pd/C Κ OH (Step ii) +conc. H₂SO₄ / heat L (Step v) +Μ Suggest structures for compounds H - M in the reaction sequences above. Η I J K L Μ What approximate ratio **H** : **I** do you expect? Why? What type of reaction is occurring in Step i? What type of reaction is occurring in Step ii? What type of reaction is occurring in Step iii? What type of reaction is occurring in Step iv?

THIS QUESTION CONTINUES ON THE NEXT PAGE.

What is the systematic name for G ?								
How many configurational ster	eoisomers of G are there?	_						
Assign the absolute configurati	on of stereoisomer G_1 below. Show your working.							
OH								
• • • • • • • • • • • • • • • • • • •								
Draw G_2 (the enantiomer of G_1) and G_3 (a diastereomer of G_1)							
G_2 (enantiomer of G_1)	G_3 (diastereomer of G_1)							
THE DEMAINDED OF TH	IS PAGE IS FOR ROUGH WORKING ONLY.							

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

5

Marks • A step-by-step mechanism for the formation of an acetal from a hemiacetal is outlined below. Demonstrate your understanding of reaction mechanisms by adding curly arrows to complete this mechanism. Note: you don't need to have seen this mechanism before to answer this question. Η Η 0, H^{\oplus} H Đ, Η Η Р Η Ð Η Η Η .. ,OH Ð Æ H′ Н Q Overall, what type of reaction $(\mathbf{P} \rightarrow \mathbf{Q})$ is shown here? Identify one nucleophile and one electrophile in the scheme above. nucleophile electrophile

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\epsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	imal fract	ions	Deci	Decimal multiples				
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol			
10^{-3}	milli	m	10^{3}	kilo	k			
10^{-6}	micro	μ	10^{6}	mega	Μ			
10^{-9}	nano	n	10 ⁹	giga	G			
10^{-12}	pico	р	10^{12}	tera	Т			

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

Standard Reduction Potentials, E°	
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(g) + 7H_2O$	+1.36
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) ~+~ 4H^+(aq) ~+~ e^- \rightarrow ~Mn^{3+} ~+~ 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$\mathrm{Cu}^+(\mathrm{aq}) + \mathrm{e}^- \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^- \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$\mathrm{Cd}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$	-0.40
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$\mathrm{Sc}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Sc}(\mathrm{s})$	-2.09
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

Useful formulas							
Quantum Chemistry	Electrochemistry						
$E = h u = h c / \lambda$	$\Delta G^{\circ} = -nFE^{\circ}$						
$\lambda = h/mv$	Moles of $e^- = It/F$						
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$						
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$						
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$						
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$						
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$						
Acids and Bases	Gas Laws						
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT						
$pK_w = pK_a + pK_b = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$						
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$						
Radioactivity	Kinetics						
$t_{1/2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$						
$A = \lambda N$	$k = A e^{-Ea/RT}$						
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$						
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$						
Mathematics	Thermodynamics & Equilibrium						
If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$						
2a	$\Delta G = \Delta G^{\circ} + RT \ln Q$						
$\ln x = 2.303 \log x$	$\Delta G^{\circ} = -RT \ln K$						
Area of circle = πr^2	$\Delta_{\rm univ}S^{\rm o}=R\ln\!K$						
Surface area of sphere = $4\pi r^2$	$\ln \frac{K_{2}}{K_{1}} = \frac{-\Delta H^{\circ}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}} \right)$						
Volume of sphere = $\frac{4}{3} \pi r^3$	$K_1 \qquad R \qquad T_2 \qquad T_1'$						
Miscellaneous	Colligative Properties & Solutions						
$A = -\log \frac{I}{I_0}$	$\Pi = cRT$						
0	$P_{\rm solution} = X_{\rm solvent} \times P^{\circ}_{\rm solvent}$						
$A = \varepsilon c l$	c = kp AT = Km						
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	$\Delta T_{\rm f} = K_{\rm f} m$						
$4\pi\varepsilon_0 r$	$\Delta T_{\rm b} = K_{\rm b} m$						

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудгоден Н 1.008		_															2 нешим Не 4.003
3 LITHIUM	4 beryllium											5 boron	6 CARBON	7 NITROGEN	8 oxygen	9 FLUORINE	10
Linnow	BERYLLIUM											BORON	САКВОЙ	NIROGEN	OXYGEN	F	NEON Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11 SODIUM	12 magnesium											13 ALUMINI	14 silicon	15 PHOSPHORUS	16 SULFUR	17 CHLORINE	18 Argon
Na	Magnesium											Alemini	Silicon	PHOSPHORUS	SOLFOR	Cl	Arcon
22.99	24.31			-								26.98		30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM K	CALCIUM Ca	scandium Sc	TITANIUM Ti	VANADIUM V	CHROMIUM Cr	MANGANESE Mn	Fe	COBALT	NICKEL Ni	COPPER Cu	ZINC	GALLIUM	GERMANIUM GER	ARSENIC AS	selenium Se	BROMINE Br	KRYPTON Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.3			74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM Rb	strontium Sr	YTTRIUM Y	zirconium Zr	NIOBIUM Nb	MOLYBDENUM Mo	TECHNETIUM TC	RUTHENIUM Ru	RHODIUM Rh	palladium Pd	SILVER Ag			Sn	ANTIMONY Sb	TELLURIUM Te	IODINE	xenon Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.4			121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM CS	barium Ba		hafnium Hf	TANTALUM Ta	TUNGSTEN W	RHENIUM Re	OSMIUM OS	iridium Ir	platinum Pt	GOLD Au	HERCUI		I LEAD Pb	BISMUTH Bi	POLONIUM PO	ASTATINE At	radon Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.5		. –	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103		105	106	107	108	109	110	111	112		114		116		
FRANCIUM Fr	radium Ra		RUTHERFORDIUM Rf	DUBNIUM Db	seaborgium Sg	BOHRIUM Bh	HASSIUM HS	MEITNERIUM Mt	darmstadtium DS	roentgenium Rg	copernic Cn		FLEROVIUM		LIVERMORIUM		
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]	[283		[289]		[293]		
	5		58	59	60	61	62	63	64		55	66	67	68	69	70	71
LANTHANO	IDS LANTE		erium pf	raseodymium Pr	NEODYMIUM Nd	PROMETHIUM Pm	samarium Sm	EUROPIUN Eu	i GADOLIT		авим Г b	dysprosium Dy	HOLMIUM HO	ERBIUM Er	THULIUM Tm	vtterbium Yb	LUTETIUM Lu
	138			140.91	144.24	[144.9]	150.4	151.96			8.93	162.50	164.93	167.26	168.93	173.04	174.97
	8		90	91	92	93	94	95	96		97	98	99	100	101	102	103
ACTINOID	3		iorium pi Th	ROTACTINIUM Pa	URANIUM U	NEPTUNIUM Np	PLUTONIUM Pu	AMERICIUM Am	u curit Cri		ellium Bk	CALIFORNIUM CALIFORNIUM	EINSTEINIUM Es	FERMIUM Fm	MENDELEVIUM Md	NOBELIUM NO	lawrencium Lr
				[231.0]	238.03	[237.0]	[239.1]	[243.1			7.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS