Click on the links for resources on each topic.

2013-N-2:

- Crystal Structures
- Metal Complexes

2013-N-3:

- Metal Complexes
- Coordination Chemistry

2013-N-4:

- Weak Acids and Bases
- Calculations Involving $\mathrm{p} \mathrm{Ka}_{\mathrm{a}}$

2013-N-5:

- Solubility Equilibrium
- Metal Complexes

2013-N-6:

- Intermolecular Forces and Phase Behaviour
- Physical States and Phase Diagrams

2013-N-7:

- Alkenes
- Stereochemistry

2013-N-8:

- Amines

2013-N-9:

- Alkenes
- Alcohols

2013-N-10:

- Alkenes
- Alcohols

2013-N-11:

- Organic Halogen Compounds
- Carboxylic Acids and Derivatives

2013-N-12:

- Aldehydes and Ketones

CHEM1902 - CHEMISTRY 1B (ADVANCED)

and

CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM)

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2013
TIME ALLOWED: THREE HOURS
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

| FAMILY |
| :---: | :--- | :---: | :--- |
| NAME |\quad| | |
| :---: | :---: |
| OTHER | |
| NUMD | |
| NAMES | |
| TABLE | |

OFFICIAL USE ONLY

Multiple choice section

Short answer section

Page	Marks			Marker
	Max	Gained		
10	7			
11	8			
12	9			
14	6			
15	6			
16	8			
17	3			
18	6			
19	6			
21	7			
23	5			
Total	71			
Check Total				

- Copper oxide is used as a photovoltaic material in solar cells and it crystallizes with the structure shown below. The large white spheres represent the oxygen atoms and the smaller black spheres represent copper atoms.

How many unit cells are represented in the above diagram? Explain your answer.

From the solid-state structure shown above, determine the empirical formula for copper oxide.

What is the oxidation state of copper in this compound?

Use the box notation to predict whether the copper ions are paramagnetic.
\square
Silver oxide is another Group 11 metal oxide and its solid-state structure is identical to that of copper oxide even though the ionic radius for the copper ion (118 pm) is smaller than that of the silver ion (139 pm). Account for this observation.

- $\mathrm{K}_{2}\left[\mathrm{Re}_{2} \mathrm{Cl}_{8}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is an historically important example of a metal-metal bonded complex. Name the complex by using standard IUPAC nomenclature.

What is the oxidation state of Re in this complex?
How many d-electrons are on each Re atom in this complex?
$\mathrm{K}_{2}\left[\mathrm{Re}_{2} \mathrm{Cl}_{8}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ possesses an extremely short $\mathrm{Re}-\mathrm{Re}$ bond (224 pm), much shorter than the bonding distance between Re atoms in Re metal (274 pm)! Propose a reasonable explanation for the very short Re-Re bond length in the complex by adding d-electrons into the (partial) MO scheme shown below. Determine the bond order for the metal-metal bond and draw a structure for the complex.

Reduction of the Re complex by one electron gives rise to a paramagnetic species in which the Re-Re distance increases significantly. Propose a reasonable hypothesis for the bond-lengthening phenomenon.

- Boric acid, $\mathrm{B}(\mathrm{OH})_{3}$, is a weak acid $\left(\mathrm{p} K_{\mathrm{a}}=9.24\right)$ that is used as a mild antiseptic and eye wash. Unusually, the Lewis acidity of the compound accounts for its Brønsted acidity. By using an appropriate chemical equation, show how this compound acts as a Brønsted acid in aqueous solution.

Solution A consists of a 0.40 M aqueous solution of boric acid at $25^{\circ} \mathrm{C}$. Calculate the pH of Solution A.

$$
\mathrm{pH}=
$$

At $25^{\circ} \mathrm{C}, 1.00 \mathrm{~L}$ of Solution B consists of 101.8 g of $\mathrm{NaB}(\mathrm{OH})_{4}$ dissolved in water. Calculate the pH of Solution B.
\square
Using both Solutions A and B, calculate the volumes (mL) required to prepare a 1.0 L solution with a $\mathrm{pH}=8.00$.

- What is the solubility of $\mathrm{Cu}(\mathrm{OH})_{2}$ in $\mathrm{mol} \mathrm{L}^{-1}$? $K_{\text {sp }}\left(\mathrm{Cu}(\mathrm{OH})_{2}\right)$ is 1.6×10^{-19} at $25^{\circ} \mathrm{C}$.

The overall formation constant for $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is 1.0×10^{13}. Write the equation for the reaction of Cu^{2+} ions with excess ammonia solution.

Calculate the value of the equilibrium constant for the following reaction.

$$
\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})+4 \mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})
$$

\square

- The diagram below shows the phase diagram of sulfur. Note that 'rhombic' and

Determine the number of triple points for sulfur and indicate which species are present at each of the triple points.
\square
Which crystalline form of sulfur is predicted to be more dense? Briefly explain your answer.
"Plastic" sulfur is a tough elastic substance that is formed when molten sulfur (m.p. $=115.2^{\circ} \mathrm{C}$) is poured into cold water. On standing, it slowly crystallizes. Predict which crystalline form is formed at room temperature and pressure.
Also, explain why "plastic" sulfur is not shown on the above phase diagram.

- Addition of HBr to the isomer of 2-pentene shown below gives 3 isomeric products,

A, B and C, in an approximate ratio of 50:25:25 respectively.

\qquad $\mathbf{A}+\mathbf{B}+\mathbf{C}$

Draw the three products \mathbf{A}, \mathbf{B} and \mathbf{C}.

A	B	C

Explain the ratio of products observed.

What is the isomeric relationship between \mathbf{A} and \mathbf{B} ?
What is the isomeric relationship between \mathbf{B} and \mathbf{C} ?
Assign the stereochemistry of the starting material isomer. Show your working.
\square
Draw the other configurational isomer of 2-pentene and assign its stereochemistry.

What product(s) would you expect from the addition of HBr to this stereoisomer, and in what ratio?

- Consider the amine \mathbf{D}, imine \mathbf{E} and nitrile \mathbf{F} shown below. Draw any lone pairs of electrons that are required to complete the structures.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Consider the following reaction sequences beginning with the secondary alcohol, G.

Suggest structures for compounds $\mathbf{H}-\mathbf{M}$ in the reaction sequences above.

\mathbf{H}	\mathbf{I}	\mathbf{J}
\mathbf{K}	\mathbf{L}	\mathbf{M}

What approximate ratio \mathbf{H} : I do you expect? Why?

What type of reaction is occurring in Step i?
What type of reaction is occurring in Step ii?
What type of reaction is occurring in Step iii?
What type of reaction is occurring in Step iv? \square

What is the systematic name for \mathbf{G} ?

How many configurational stereoisomers of \mathbf{G} are there?
Assign the absolute configuration of stereoisomer $\mathbf{G}_{\mathbf{1}}$ below. Show your working.

G_{1}
Draw $\mathbf{G}_{\mathbf{2}}$ (the enantiomer of $\mathbf{G}_{\mathbf{1}}$) and $\mathbf{G}_{\mathbf{3}}$ (a diastereomer of $\mathbf{G}_{\mathbf{1}}$)

\mathbf{G}_{2} (enantiomer of \mathbf{G}_{1})	\mathbf{G}_{3} (diastereomer of \mathbf{G}_{1})

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- The hydroxide anion can react with chloroethane via a mechanism that is abbreviated $S_{N} 2$, as shown below. Add curly arrows to the reaction scheme to complete a mechanism for this reaction.

Explain what each part of the abbreviation $\mathrm{S}_{\mathrm{N}} 2$ means.
$S=$
${ }_{N}=$
$2=$
The hydroxide anion undergoes an apparently similar reaction with ethanoyl chloride:

Draw a mechanism (using curly arrows) for this reaction, thereby demonstrating how it is fundamentally different to the reaction of chloroethane above.

In each of these reactions, a full molecular orbital of the hydroxide anion (the HOMO) interacts with an empty molecular orbital of the organic halogen compound (the LUMO).

Which orbital is the LUMO in chloroethane?
Which orbital is the LUMO in ethanoyl chloride?

- A step-by-step mechanism for the formation of an acetal from a hemiacetal is outlined below. Demonstrate your understanding of reaction mechanisms by adding curly arrows to complete this mechanism.
Note: you don't need to have seen this mechanism before to answer this question.

Overall, what type of reaction $(\mathbf{P} \rightarrow \mathbf{Q})$ is shown here?
\square
Identify one nucleophile and one electrophile in the scheme above.

nucleophile	electrophile

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1902 - CHEMISTRY 1B (ADVANCED)
 CHEM1904 - CHEMISTRY 1B (SSP)

DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Permittivity of a vacuum, $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{e}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{p}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter
Volume of 1 mole of ideal gas at 1 atm and $25{ }^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
1 tonne $=10^{3} \mathrm{~kg}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{~W}=1 \mathrm{~J} \mathrm{~s}^{-1}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$

Decimal fractions
Fraction Prefix Symbol

10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G
10^{12}	tera	T

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

Standard Reduction Potentials, E°

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$	+1.72
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}$	+1.51
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$	+1.50
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{g})+7 \mathrm{H}_{2} \mathrm{O}$	+1.36
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	+1.23
$\mathrm{Pt}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pt}(\mathrm{s})$	+1.18
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$	+0.96
$\mathrm{NO}_{3}^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}$	+0.96
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd}(\mathrm{s})$	+0.92
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.15
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	0 (by definition)
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.04
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.24
$\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$	-0.40
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.74
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.76
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.83
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$\mathrm{Sc}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Sc}(\mathrm{s})$	-2.09
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.36
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$	-2.71
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s})$	-2.87
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	-3.04

CHEM1902 - CHEMISTRY 1B (ADVANCED)
 CHEM1904 - CHEMISTRY 1B (SSP)
 Useful formulas

Quantum Chemistry $\begin{aligned} & E=h v=h c / \lambda \\ & \lambda=h / m v \\ & E=-Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right) \\ & \Delta x \cdot \Delta(m v) \geq h / 4 \pi \\ & q=4 \pi r^{2} \times 5.67 \times 10^{-8} \times T^{4} \\ & T \lambda=2.898 \times 10^{6} \mathrm{~K} \mathrm{~nm} \end{aligned}$	Electrochemistry $\Delta G^{\circ}=-n F E^{\circ}$ Moles of $e^{-}=I t / F$ $\begin{aligned} E & =E^{\circ}-(R T / n F) \times 2.303 \log Q \\ & =E^{\circ}-(R T / n F) \times \ln Q \\ E^{\circ} & =(R T / n F) \times 2.303 \log K \\ & =(R T / n F) \times \ln K \\ E & =E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right) \end{aligned}$
Acids and Bases $\begin{aligned} & \mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00 \\ & \mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00 \\ & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\} \end{aligned}$	Gas Laws $\begin{aligned} & P V=n R T \\ & \left(P+n^{2} a / V^{2}\right)(V-n b)=n R T \\ & E_{\mathrm{k}}=1 / 2 m V^{2} \end{aligned}$
Radioactivity $\begin{aligned} & t_{1 / 2}=\ln 2 / \lambda \\ & A=\lambda N \\ & \ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t \end{aligned}$ ${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{t}\right)$ years	Kinetics $\begin{aligned} & t_{1 / 2}=\ln 2 / k \\ & k=A \mathrm{e}^{-E a / R T} \\ & \ln [\mathrm{~A}]=\ln [\mathrm{A}]_{0}-k t \\ & \ln \frac{k_{2}}{k_{1}}=\frac{E a}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \end{aligned}$
Mathematics If $\mathrm{ax}^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$ $\ln x=2.303 \log x$ Area of circle $=\pi r^{2}$ Surface area of sphere $=4 \pi r^{2}$ Volume of sphere $=4 / 3 \pi r^{3}$	Thermodynamics \& Equilibrium $\begin{aligned} & \Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \\ & \Delta G=\Delta G^{\circ}+R T \ln Q \\ & \Delta G^{\circ}=-R T \ln K \\ & \Delta_{\text {univ }} S^{\circ}=R \ln K \\ & \ln \frac{K_{2}}{K_{1}}=\frac{-\Delta H^{\circ}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \end{aligned}$
Miscellaneous $\begin{aligned} & A=-\log \frac{I}{I_{0}} \\ & A=\varepsilon c l \\ & E=-A \frac{e^{2}}{4 \pi \varepsilon_{0} r} N_{\mathrm{A}} \end{aligned}$	Colligative Properties \& Solutions $\begin{aligned} & \Pi=\mathrm{cRT} \\ & P_{\text {solution }}=X_{\text {solvent }} \times P_{\text {solvent }}^{\circ} \\ & \mathrm{c}=k \mathrm{p} \\ & \Delta T_{\mathrm{f}}=K_{\mathrm{f}} m \\ & \Delta T_{\mathrm{b}}=K_{\mathrm{b}} m \end{aligned}$

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\begin{gathered} 1 \\ \substack{\text { нуpogen } \\ \mathbf{H} \\ 1.008} \end{gathered}$																	$\begin{gathered} \hline 2 \\ \text { нвцмм } \\ \mathbf{H e} \\ 4.003 \end{gathered}$
$\begin{gathered} 3 \\ \substack{\text { цтним } \\ \mathbf{L i} \\ 6.941} \end{gathered}$	$\begin{gathered} 4 \\ \hline \text { вегмцим } \\ \mathbf{B e} \\ 9.012 \end{gathered}$											$\begin{gathered} \hline 5 \\ \text { вовом } \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} \begin{array}{c} 6 \\ \text { cаввом } \\ \mathbf{C} \end{array} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \begin{array}{c} 7 \\ \text { nirogen } \\ \mathbf{N} \\ 14.01 \end{array} \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} 8 \\ \text { oxcen } \\ \mathbf{O} \\ 16.00 \end{array} \end{gathered}$	$\begin{gathered} \hline 9 \\ \text { Fluorne } \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} \hline 10 \\ \text { NEN } \\ \text { Ne } \\ 20.18 \end{gathered}$
$\begin{gathered} \hline 11 \\ \text { sonvm } \\ \text { Na } \\ 22.99 \\ \hline \end{gathered}$	$\begin{gathered} \hline 12 \\ \text { маскеним } \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} \hline 13 \\ \text { а⿱䒑龰ммпим } \\ \text { Al } \\ 26.98 \end{gathered}$	$\begin{gathered} \hline 14 \\ \text { sulucon } \\ \mathbf{S i} \\ 28.09 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 15 \\ \text { phosphoves } \\ \mathbf{P} \\ 30.97 \\ \hline \end{array}$	$\begin{gathered} \hline 16 \\ \text { sulfur } \\ \mathbf{S} \\ 32.07 \\ \hline \end{gathered}$	$\begin{gathered} \hline 17 \\ \text { chlorne } \\ \text { Cl } \\ 35.45 \\ \hline \end{gathered}$	$\begin{gathered} \hline 18 \\ \text { ARcow } \\ \mathbf{A r} \\ 39.95 \\ \hline \end{gathered}$
$\begin{gathered} \hline 19 \\ \text { porassum } \\ \mathbf{K} \\ 39.10 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ \text { саисим } \\ \mathbf{C a} \\ 40.08 \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 \\ \text { scandum } \\ \mathrm{Sc} \\ 44.96 \\ \hline \end{gathered}$	$\begin{gathered} \hline 22 \\ \text { ттамим } \\ \mathbf{T i} \\ 47.88 \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ \substack{\text { vanawum } \\ \mathbf{V} \\ 50.94 \\ \hline} \end{gathered}$	$\begin{gathered} 24 \\ \text { снкомим } \\ \mathbf{C r} \\ 52.00 \end{gathered}$	25 mancanese $\mathbf{M n}$ 54.94	$\begin{gathered} \hline 26 \\ \text { 鬲 } \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 27 \\ \text { соват } \\ \text { Co } \\ 58.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 28 \\ \text { мпккц } \\ \mathbf{N i} \\ 58.69 \\ \hline \end{gathered}$	$\begin{gathered} \hline 29 \\ \text { copres } \\ \mathbf{C u} \\ 63.55 \\ \hline \end{gathered}$	$\begin{gathered} \hline 30 \\ \text { zanc } \\ \mathbf{Z n} \\ 65.39 \\ \hline \end{gathered}$	31 GALLIUM Ga 69.72	$\begin{array}{\|c\|} \hline 32 \\ \text { севимлим } \\ \mathbf{G e} \\ 72.59 \\ \hline \end{array}$	$\begin{gathered} \hline 33 \\ \text { ARERNC } \\ \text { As } \\ 74.92 \\ \hline \end{gathered}$	$\begin{gathered} \hline 34 \\ \text { SLLENUM } \\ \text { Se } \\ 78.96 \\ \hline \end{gathered}$	$\begin{gathered} \hline 35 \\ \text { вrowne } \\ \mathbf{B r} \\ 79.90 \\ \hline \end{gathered}$	$\begin{gathered} \hline 36 \\ \text { квугтом } \\ \mathbf{K r} \\ 83.80 \\ \hline \end{gathered}$
$\begin{gathered} \hline 37 \\ \begin{array}{c} \text { Rubivum } \\ \text { Rb } \\ 85.47 \end{array} \end{gathered}$	$\begin{gathered} 38 \\ \begin{array}{c} 3 \text { strontuм } \\ \mathbf{S r} \\ 87.62 \end{array} \end{gathered}$	$\begin{gathered} \hline 39 \\ \text { yтrाuм } \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \text { zıronwм } \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} \hline 41 \\ \text { мовим } \\ \mathbf{N b} \\ 92.91 \\ \hline \end{gathered}$		$\begin{gathered} \hline 43 \\ \text { тесанттм } \\ \text { Tc } \\ {[98.91]} \\ \hline \end{gathered}$	$\begin{gathered} 44 \\ \text { Rотеним } \\ \mathbf{R u} \\ 101.07 \end{gathered}$	$\begin{gathered} 45 \\ \text { Rно⿱亠䒑 } \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} \hline 46 \\ \text { Ранаримм } \\ \text { Pd } \\ 106.4 \end{gathered}$	$\begin{gathered} 47 \\ \text { sulver } \\ \mathbf{A g} \\ 107.87 \end{gathered}$	$\begin{gathered} \hline 48 \\ \begin{array}{c} \text { canмuм } \\ \text { Cd } \end{array} \\ 112.40 \end{gathered}$	$\begin{gathered} \hline 49 \\ \text { rnoum } \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \text { tiv } \\ \text { Sn } \\ 118.69 \\ \hline \end{gathered}$	$\begin{gathered} \hline 51 \\ \text { алтмолу } \\ \mathbf{S b} \\ 121.75 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 52 \\ \text { тециним } \\ \text { Te } \\ 127.60 \\ \hline \end{array}$	$\begin{gathered} \hline 53 \\ \text { 1onNe } \\ \mathbf{I} \\ 126.90 \end{gathered}$	$\begin{gathered} \hline 54 \\ \text { xenow } \\ \mathbf{X e} \\ 131.30 \\ \hline \end{gathered}$
$\begin{gathered} 55 \\ \text { cansum } \\ \text { Cs } \\ 132.91 \\ \hline \end{gathered}$	$\begin{gathered} 56 \\ \substack{\text { ваним } \\ \mathbf{B a} \\ 137.34 \\ \hline} \end{gathered}$	57－71	$\begin{gathered} 72 \\ \text { ниеним } \\ \mathbf{H f} \\ 178.49 \\ \hline \end{gathered}$	$\begin{gathered} 73 \\ \text { тамтацмм } \\ \text { Ta } \\ 180.95 \\ \hline \end{gathered}$	$\begin{gathered} 74 \\ \substack{74 \\ \text { rungrin } \\ \mathbf{W} \\ 183.85 \\ \hline} \end{gathered}$	$\begin{gathered} 75 \\ \text { минемим } \\ \text { Re } \\ 186.2 \\ \hline \end{gathered}$	$\begin{gathered} 76 \\ \text { osmum } \\ \text { Os } \\ 190.2 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 77 \\ \text { remwu } \\ \text { Ir } \\ 192.22 \\ \hline \end{array}$	$\begin{gathered} 78 \\ \text { риатимм } \\ \mathbf{P t} \\ 195.09 \\ \hline \end{gathered}$	$\begin{array}{r} 79 \\ \text { coup } \\ \mathbf{A u} \\ 196.97 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 80 \\ \text { меRCury } \\ \mathbf{H g} \\ 200.59 \\ \hline \end{array}$	$\begin{gathered} \hline 81 \\ \text { тианим } \\ \text { Tl } \\ 204.37 \\ \hline \end{gathered}$	$\begin{gathered} 82 \\ \hline \text { LEND } \\ \text { Pb } \\ 207.2 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 83 \\ \text { BISNuru } \\ \mathbf{B i} \\ 208.98 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 84 \\ \text { pooonum } \\ \text { Po } \\ {[210.0]} \\ \hline \end{array}$	$\begin{gathered} 85 \\ \text { Assatine } \\ \mathbf{A t} \\ {[210.0]} \\ \hline \end{gathered}$	$\begin{gathered} 86 \\ \text { Radow } \\ \mathbf{R n} \\ {[222.0]} \\ \hline \end{gathered}$
$\begin{gathered} 87 \\ \text { francum } \\ \mathbf{F r} \\ {[223.0]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 88 \\ \text { Ranum } \\ \mathbf{R a} \\ {[226.0]} \\ \hline \end{gathered}$	89－103		$\begin{gathered} 105 \\ \text { римnvum } \\ \mathbf{D b} \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 106 \\ \text { Sеввокам } \\ \mathrm{Sg} \\ {[266]} \\ \hline \end{gathered}$	$\begin{gathered} 107 \\ \text { вонким } \\ \mathbf{B h} \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 108 \\ \text { hassum } \\ \text { Hs } \\ {[265]} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 109 \\ \text { мепvRuм } \\ \mathbf{M t} \\ {[266]} \\ \hline \end{array}$	110 DАвйтаттим Ds ［271］	$\underset{\substack{111 \\ \text { Roercenve } \\ \mathbf{R g} \\[272]}}{ }$	$\begin{array}{\|c\|} \hline 112 \\ \text { соввлисим } \\ \mathbf{C n} \\ {[283]} \\ \hline \end{array}$		$\begin{array}{\|c} \hline 114 \\ \text { FLERovum } \\ \text { Fl } \\ {[289]} \\ \hline \end{array}$		116 Lverмoruм $\mathbf{L V}$ $[293]$		

LANTHANOIDS	$\begin{gathered} 57 \\ \text { Lanthan } \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{gathered} 58 \\ \text { cerrum } \\ \text { Ce } \\ 140.12 \end{gathered}$	59 prastopmum $\mathbf{P r}$ 140.91 9	$\begin{gathered} \hline 60 \\ \text { меормим } \\ \text { Nd } \\ 144.24 \end{gathered}$	$\begin{gathered} \hline 61 \\ \text { ргомптним } \\ \mathbf{P m} \\ {[144.9]} \end{gathered}$	$\begin{gathered} 62 \\ \text { samarum } \\ \text { Sm } \\ 150.4 \end{gathered}$	$\begin{gathered} \hline 63 \\ \text { вuropuм } \\ \text { Eu } \\ 151.96 \end{gathered}$	$\begin{gathered} 64 \\ \text { canounuм } \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} \hline 65 \\ \text { теввим } \\ \mathbf{T b} \\ 158.93 \end{gathered}$	66 oxsprosum Dy 162.50	$\begin{gathered} 67 \\ \text { номмим } \\ \mathbf{H o} \\ 164.93 \end{gathered}$	$\begin{gathered} \hline 68 \\ \text { еквим } \\ \text { Er } \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \begin{array}{c} \text { тиним } \\ \mathbf{T m} \\ 168.93 \end{array} \end{gathered}$	$\begin{gathered} 70 \\ \begin{array}{c} 7 \text { мтввним } \\ \mathbf{Y b} \\ 173.04 \end{array} \end{gathered}$	$\begin{gathered} \hline 71 \\ \text { цинним } \\ \mathbf{L u} \\ 174.97 \end{gathered}$
ACTINOIDS	$\begin{gathered} 89 \\ \underset{\text { сстмим }}{\text { Ac }} \\ {[227.0]} \end{gathered}$	$\begin{gathered} \hline 90 \\ \substack{\text { тноким } \\ \text { Th } \\ 232.04} \end{gathered}$	91 $\left.\begin{array}{c}\text { protactinuм } \\ \mathbf{P a} \\ {[231.0]}\end{array}\right]$	$\begin{gathered} \hline 92 \\ \text { URANUM } \\ \mathbf{U} \\ 238.03 \end{gathered}$	$\begin{gathered} 93 \\ \begin{array}{c} \text { меттимим } \\ \mathbf{N p} \\ {[237.0]} \end{array} \end{gathered}$	$\begin{gathered} 94 \\ \text { ричтомим } \\ \mathbf{P u} \\ {[239.1]} \end{gathered}$	95 $\left.\begin{array}{c}\text { амегстим } \\ \text { Am } \\ \text {［243．1］}\end{array}\right]$	$\begin{gathered} \hline 96 \\ \text { curum } \\ \text { Cm } \\ {[247.1]} \end{gathered}$	97 $\left.\begin{array}{c}\text { вевкшитм } \\ \mathbf{B k} \\ {[247.1]}\end{array}\right]$	98 сайовмим Cf $[252.1]$	99 $\left.\begin{array}{c}\text { епstrenum } \\ \text { Es } \\ {[252.1]}\end{array}\right]$	$\begin{gathered} \substack{100 \\ \text { ненимм } \\ \mathbf{F m} \\ [257.1]} \end{gathered}$	$\begin{gathered} \hline 101 \\ \substack{\text { мепрпегuм } \\ \text { Md } \\ [256.1]} \end{gathered}$	$\begin{gathered} \hline 102 \\ \text { моввим } \\ \text { No } \\ {[259.1]} \end{gathered}$	$\begin{gathered} \hline 103 \\ \text { Lawercum } \\ \mathbf{L r} \\ {[260.1]} \end{gathered}$

